a2 + b2 = (a - b)2 + 2ab. B. Bài tập ví dụ minh họa bài toán a^2 + b^2. Hằng đẳng thức đáng nhớ đưa ra phương pháp và các ví dụ cụ thể, giúp các bạn học sinh lớp 8 ôn tập và củng cố kiến thức về dạng toán về những hằng đẳng thức đáng nhớ. Tài liệu bao gồm công
Niech A oznacza zbiór rozwiązań nierówności: \frac{3x+1}{x-2} wieksze lub rowne \frac{2x-3}{x-2}, natomiast B- zbiór rozwiązan nierówności: \frac{2}{x} mniejsze lub rowne 1. Wypisz elementy zbiorów A i B. Wyznacz zbiory: A suma B, A iloczyn B, A-B, B-A
George Washington is a highly rated private university located in Washington, D.C. It is a large institution with an enrollment of 10,284 undergraduate students. Admissions is fairly competitive as the George Washington acceptance rate is 50%. Popular majors include International Relations, Political Science and Government, and Nursing.
Lemat 2.2.2. Niech A b ędzie k-algebrą gener owaną nad k przez jeden element. Jeśli A jest. ciałem, to k
Niech . Wykaż, że . Wersja PDF. Przekształcamy teraz lewą stronę równości, którą mamy udowodnić - zamieniamy podstawę logarytmu na 2. Spos ób II.
Niche market. A niche market [note 1] is the subset of the market on which a specific product is focused. The market niche defines the product features aimed at satisfying specific market needs, as well as the price range, production quality and the demographics that it is intended to target. It is also a small market segment.
ZxaMnX. Odpowiedzi EKSPERTHerhor odpowiedział(a) o 20:30 a+b = 3x-y +x-1=4x-y-1a+b-c=(a+b)-c= (4x-y-1)+3x= x-2y-1a-b-c= 3x-y-x+1+3x= 5x +1a-(b-c)= 3x-y -x+1-3x= -x-y+1 0 0 Aniooo xd odpowiedział(a) o 20:39: dziękuje Uważasz, że znasz lepszą odpowiedź? lub
Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura sierpień 2017 zadanie 1 Niech a=−2, b=3. Wartość wyrażenia ab−ba jest równa:Niech a=−2, b=3. Wartość wyrażenia ab−ba jest równa:Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura sierpień 2017 zadanie 2 Liczba 9^9⋅81^2 jest równa:Następny wpis Matura czerwiec 2016 zadanie 33 Rejsowy samolot z Warszawy do Rzymu przelatuje nad Austrią każdorazowo tą samą trasą z taką samą zakładaną prędkością przelotową. We wtorek jego średnia prędkość była o 10% większa niż prędkość przelotowa, a w czwartek średnia prędkość była o 10% mniejsza od zakładanej prędkości przelotowej. Czas przelotu nad Austrią w czwartek różnił się od wtorkowego o 12 minut. Jak długo trwał przelot tego samolotu nad Austrią we wtorek
Różnicę zbiorów \(A\) i \(B\) oznaczamy: \[A \backslash B\] Graficzna ilustracja różnicy zbiorów \(A \backslash B\): Do różnicy \(A \backslash B\) zaliczamy wszystkie liczby, które wchodzą w skład zbioru \(A\) i nie wchodzą w skład zbioru \(B\). Różnicę zbiorów \(B\) i \(A\) oznaczamy: \[B \backslash A\] Graficzna ilustracja różnicy zbiorów \(B \backslash A\): Do różnicy \(B \backslash A\) zaliczamy wszystkie liczby, które wchodzą w skład zbioru \(B\) i nie wchodzą w skład zbioru \(A\). Jeżeli \(A = \{1, 2, 3, 4, 5\}\) oraz \(B = \{4, 5, 6, 7\}\), to: \[A \backslash B = \{1, 2, 3\}\] oraz: \[B \backslash A = \{6, 7\}\] Niech \(A = (-3, 1)\) oraz \(B = (0, 5)\). Na początku zaznaczymy na osi liczbowej zbiór \(A\) oraz zbiór \(B\): Teraz zaznaczymy różnicę zbiorów \(A \backslash B\): Czyli: \[A\backslash B = (-3,0\rangle \] Teraz zaznaczymy na osi liczbowej różnicę \(B \backslash A\): Czyli: \[B \backslash A = \langle 1,5)\]
Klasa: I liceum → Przedmiot: Matematyka → MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 1 Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie Niech A={1,2,3,4},B={0,2,4,6,8,10}. Tylko liczby 2 i 4 należą do obu zbiorów jednocześnie, zatem Rozwiązanie: Zaloguj się lub stwórz nowe konto aby zobaczyć zadanie! Inne książki z tej samej klasy: Matematyka 1. Zakres podstawowy. Reforma 2019 Matematyka z plusem 1. Zakres podstawowy. Reforma 2019 Matematyka 1. Zakres podstawowy. Reforma 2019 MATeMAtyka 1. Zakres podstawowy. Reforma 2019 Matematyka z plusem 1. Zakres rozszerzony. Reforma 2019 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 MATeMAtyka 1. Zakres podstawowy. Reforma 2019 Ponad słowami 1. Zakres podstawowy i rozszerzony cz. 1. Reforma 2019 Matematyka z plusem 1. Zakres podstawowy i rozszerzony. Reforma 2019 Oblicza geografii 1. Zakres podstawowy. Reforma 2019 Informacje o książce: Rok wydania 2019 Wydawnictwo Nowa Era Autorzy Wojciech Babiański, Lech Chańko, Karolina Wej ISBN 978-83-267-3486-1 Rodzaj książki Podręcznik Popularne zadania z tej książki MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 9 strona 256 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 5 strona 154 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 9 strona 114 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 2 strona 42 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 6 strona 285 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 2 strona 63 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 2 strona 48 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 3 strona 47 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 10 strona 68 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 7 strona 149 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 1 strona 134 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 6 strona 263 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 4 strona 118 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 1 strona 240 MATeMAtyka 1. Zakres podstawowy i rozszerzony. Reforma 2019 zadanie 4 strona 303
Matura próbna z matematyki (kwiecień 2020) poziom podstawowy rozwiązania zadań maturalnych Zadanie 1. (0–1) Niech a = -2, b = 3. Wartość wyrażenia ab - ba jest równa: A. \[ \frac{73}{9} \] B. \[ \frac{71}{9} \] C. \[ -\frac{73}{9} \] D. \[ -\frac{71}{9} \] Uczniowie rozwiązują to tak: Zadanie 2. (0–1) Liczba 99 · 812 jest równa: A. 814 B. 81 C. 913 D. 936 Uczniowie rozwiązują to tak: Zadanie 3. (0–1) Wartość wyrażenia log48 + 5 log42 jest równa: A. 2 B. 4 C. 2 + log45 D. 1 + log410 Uczniowie rozwiązują to tak: Zadanie 4. (0–1) Dane są dwa koła. Promień pierwszego koła jest większy od promienia drugiego koła o 30%. Wynika stąd, że pole pierwszego koła jest większe od pola drugiego koła A. o mniej niż 50%, ale więcej niż 40% B. o mniej niż 60%, ale więcej niż 50% C. dokładnie o 60% D. o więcej niż 60% Uczniowie rozwiązują to tak: Zadanie 5. (0–1) Liczba \[ (2\sqrt{7}-5)^2 \cdot (2\sqrt{7}+5)^2 \] jest równa: A. 9 B. 3 C. 2809 D. \[ 28 - 20 \sqrt{7} \] Uczniowie rozwiązują to tak: Zadanie 6. (0–1) Wskaż rysunek, na którym jest przedstawiony zbiór wszystkich liczb x spełniających warunek 11 ≤ 2x-7 ≤ 15 Uczniowie rozwiązują to tak: Zadanie 7. (0–1) Rozważmy treść następującego zadania: Obwód prostokąta o bokach długości a i b jest równy 60. Jeden z boków tego prostokąta jest o 10 dłuższy od drugiego. Oblicz długości boków tego prostokąta. Który ukłąd równań opisuje zależności między długościami boków tego prostokąta? A. \[ \begin{cases} 2(a+b) = 60 \\[2ex] a + 10 = b \end{cases} \] B. \[ \begin{cases} 2a+b = 60 \\[2ex] 10b = a \end{cases} \] C. \[ \begin{cases} 2ab = 60 \\[2ex] a - b = 10 \end{cases} \] D. \[ \begin{cases} 2(a+b) = 60 \\[2ex] 10a = b \end{cases} \] Uczniowie rozwiązują to tak: Zadanie 8. (0–1) Rozwiązaniem równania \[ \frac{x+1}{x+2} = 3 \] gdzie x ≠ -2 jest liczba należąca do przedziału: Zadanie 8. (0–1) Zbiorem wartości funkcji f jest przedział: A. (-2;1) B. ⟨1;+∞) C. (-$infin;l-5) D. ⟨-5;-2) Uczniowie rozwiązują to tak: Zadanie 9. (0–1) Linę o długości 100 m etrów rozcięto na trzy części, których długości pozostają w stosunku 3:4:5. Stąd wynika, że najdłuższa z tych części ma długość: A. \[ 41 \frac{2}{3} \text{ metra} \] B. \[ 31 \frac{1}{3} \text{ metra} \] C. \[ 60 \text{ metrów} \] D. \[ 25 \text{ metrów} \] Uczniowie rozwiązują to tak: Zadanie 10. (0–1) Na rysunku przedstawiono fragment wykresu funkcji kwadratowej f określonej wzorem \[ f(x) = x^2 + bx + c \] Współczynniki b i c we wzorze funkcji f spełniają warunki: A. b 0 B. b 0 i c > 0 D. b > 0 i c 0 Uczniowie rozwiązują to tak: Zadanie 28. (0–2) Wykaż, że dla dowolnych liczb rzeczywistych a i b prawdziwa jest nierówność: 3a2 - 2ab + 3b2 ≥ 0 Uczniowie rozwiązują to tak: Zadanie 29. (0–2) Dany jest okrąg o środku w punkcie S i promieniu r. Na przedłużeniu cięciwy AB poza punkt B odłożono odcinek BC równy promieniowi danego okręgu. Przez punkty C i S poprowadzono prostą. Prosta CS przecina dany okrąg w punktach D i E (zobacz rysunek). Wykaż, że jeżeli miara kąta ACS jest równa α, to miara kąta ASD jest równa 3α. Uczniowie rozwiązują to tak: Zadanie 30. (0–2) Ze zbioru liczb {1; 2; 3; 4; 5} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą. Uczniowie rozwiązują to tak: Zadanie 31. (0–2) W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze 30° (zobacz rysunek). Oblicz długość przekątnej BD tego trapezu. Uczniowie rozwiązują to tak: Zadanie 32. (0–4) Ciąg arytmetyczny (an) jest określony dla każdej liczby naturalnej n ≥ 1. Różnicą tego ciągu jest liczba r = -4, a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: a1, a2, a3, a4, a5, a6, jest równa 16. a) Oblicz pierwszy wyraz tego ciągu. b) Oblicz liczbę k, dla której ak = -78. Uczniowie rozwiązują to tak: Zadanie 33. (0–4) Dany jest punkt A = (-18; 10). Prosta o równaniu y = 3x jest symetralną odcinka AB. Wyznacz współrzędne punktu B. Uczniowie rozwiązują to tak: Zadanie 34. (0–5) Długość krawędzi podstawy ostrosłupa prawidłowego czworokątnego jest równa 6. Pole powierzchni całkowitej tego ostrosłupa jest cztery razy większe od pola jego podstawy. Kąt α jest kątem nachylenia krawędzi bocznej tego ostrosłupa do płaszczyzny podstawy (zobacz rysunek). Oblicz cosinus kąta α. Uczniowie rozwiązują to tak: Zobacz arkusze maturalne i ich rozwiązania (z matur z poprzednich lat)...
niech a 2 b 3